

ASSOCIATIVE EFFECT OF INGREDIENT SOURCES ON THE PARTIAL MIXED RATION AND TMR SILAGES FOR FEEDLOT BEEF CATTLE DIETS IN BRAZIL

Chengqiang Wang^{1*}, Greiciele de Morais¹, Álvaro B. Silva Neto¹, Aline Venância Andrade¹, Ariádna P. Ribeiro¹, Luiz G. Nussio^{1†}

Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba/SP, Brazil. *wangcq2022@gmail.com; †nussio@usp.br;

Introduction & Objective

Corn-based ethanol industry evolved in Brazil reaching 22 plants in 2024, producing together 5 million ton of DDG (dried) and WDG (wet) coproducts. Besides the huge increase of DDG for ruminant and monogastric diets, it is still there the offering of wet distillers' grains with solubles (WDGS) as a diet ingredient, mostly for finishing beef cattle. Its typical high moisture content (60-65%) and high solubles pose a challenge to logistics on hauling, storage and conservation at the farm level. Cottonseed hulls and soybean hulls are also available in large quantities in Brazil. Therefore, wet distillers' bran with solubles (WDBS) might be conserved combined with these drier ingredients to form a stable total mixed ration (TMR) silages or either partial mixed ration (PMR) silages to reduce conservation losses during storage and become more attractive to compose beef cattle finishing diets. The aim of this study was to identify strategies to control the spoilage and effluent losses in WDBS combined with dry ingredients for silage production.

Material and Methods

Treatments composition

	Treatment							
Ingredient (% DM)	TMR	WDBS	WDBS	WDBS	WDBS			
			+CH	+SH	+CORN			
Tropical grass silage	7	-	_	-	1			
Cottonseed hulls (CH)	9	_	15	_	_			
Soybean hulls (SH)	12	_	_	19	_			
Ground corn (CORN)	19	_	_	-	28			
WDBS	50	100	85	81	72			
Mineral-vitamin mix	3	_	_	-	_			

CH, SH and CORN were mixed and ensiled according to the inclusion rate defined on the TMR silage treatment, which was based on a typical beef cattle finishing diet in Mato Grosso, Brazil. All treatments were mixed thoroughly, packed into 20-L polyethylene bucket silos and stored for either 60 or 120 days with four replicates. The treatments were analyzed in a 5×2 factorial scheme (five treatments and two storage lengths). The statistical analysis was carried out using the MIXED procedure of SAS 9.Means were considered different when P < 0.05 by Tukey test.

Acknowledgments

The authors are grateful to Nutripura Research Facility (Rondonópolis, Mato Grosso, Brazil) for the donation of ingredients and financial support.

Results

Table 1. Fermentative profile of TMR silage and PMR silage.

	Length of		Treatments						P-value		
Items	storage (d)	TMR	WDBS	WDBS+ CH	WDBS+ SH	WDBS+ CORN	Mean	SEM	Т	L	T×L
рН	60 120	4.34Aa 4.34Aa	3.73Bc 3.87Ab	3.78Bbc 3.92Ab	3.79Bb 3.92Ab	3.74Bc 3.88Ab	- -	0.01	<0.01	<0.01	<0.01
Lactic acid, % DMcorr ¹	60 120 <i>Mean</i>	4.74 5.49 5.12ab	4.95 6.08 5.52ab	3.69 6.14 <i>4</i> .91 <i>b</i>	5.07 8.64 6. <i>85a</i>	4.48 7.51 5.99ab	4.59B 6.77A -	0.61	0.03	<0.01	0.13
Acetic acid, % DMcorr	60 120 <i>Mean</i>	0.37 0.40 0.39a	0.30 0.31 <i>0.31b</i>	0.24 0.31 0. <i>27b</i>	0.30 0.40 <i>0.35ab</i>	0.31 0.36 <i>0.33ab</i>	0.30B 0.36A -	0.03	<0.01	0.01	0.47
Propionic acid, mg/kg DMcorr	60 120 <i>Mean</i>	383 351 <i>367a</i>	140 145 <i>143b</i>	130 176 <i>153b</i>	134 172 153b	120 152 136b	181B 199A -	17.9	<0.01	0.01	0.17
Butyric acid, mg/kg DMcorr	60 120	117Aa 105Aa	8.50Abc 11.0Ab	3.25Ad 3.25Ac	3.75Acd 6.00Abc	12.5Ab 5.00Bc	-	3.22	<0.01	0.70	0.02
Ethanol, % DMcorr	60 120	0.11Aa 0.10Ab	0.10Aa 0.12Ab	0.10Aa 0.13Ab	0.13Ba 0.20Aa	0.11Ba 0.19Aa	-	0.01	<0.01	<0.01	<0.01

¹ Volatile-corrected dry matter.

T - treatment; L - length of storage; $T \times L$ - interaction between treatment and length of storage. a-c Means of treatments within a row with different lowercase letters differ (α =0.05).

A-B Means of storage length within a column with different capital letters differ (α =0.05).

Table 2. Fermentative profile of 45 days fermented TMR silages treated with heterolactic bacteria or chemical additives.

	Length of			Ireatmen		P-value				
ltems	storage	TMR	WDBS	WDBS+	WDBS+	WDBS+	SEM	Т	L	T×L
	(d)	HIN	VVDB3	СН	SH	CORN				
DM losses,%	60	1.80Ac	5.05Bb	7.85Aa	3.83Bbc	6.33Bab	0.61	<0.01	0.01	0.01
	120	0.58Ab	7.48Aa	7.65Aa	6.28Aa	8.75Aa				
Production of	60	26Ac	120Ba	101Aab	40Bc	86Bb	5.30	<0.01	0.01	<0.01
effluent (g/kg FM)	120	35Ad	180Aa	115Ab	57Ac	120Ab			0.01	

FM – fresh matter.

T - treatment; L - length of storage; T×L - interaction between treatment and length of storage. a-c Means of treatments within a row with different lowercase letters differ (α =0.05).

A-B Means of storage length within a column with different capital letters differ (α =0.05).

Prolonged length of storage increased pH, DM losses and effluents production. Fermentation and losses in silages, measured during the ensiling period and mixed either as TMR or PMR silages were dependent of the associative effects of the individual Water Retention Capacity (WRC) from single ingredients.

Conclusions

The results suggested that the strategy of mixed ensiled high moisture WDBS with other feedstuff was an effective method of preserving it. All WDBS-based PMR silage were well-preserved with a low pH and high aerobic stability. WDBS+SH treatment reached the lowest dry matter loss and effluent net flow. Despite the relatively higher pH, WDBS-based TMR did not affect the fermentation quality and aerobic stability, and showed lower dry matter loss and effluent production than WDBS- based PMR.

